point

 

 Remember me

Register  |   Lost password?


 

arXiv logo for blog page


Learning Choice Functions: Concepts and Architectures. (arXiv:1901.10860v2 [cs.LG] UPDATED)

Sun, 26 May 2019 19:39:34 GMT

We study the problem of learning choice functions, which play an important
role in various domains of application, most notably in the field of economics.
Formally, a choice function is a mapping from sets to sets: Given a set of
choice alternatives as input, a choice function identifies a subset of most
preferred elements. Learning choice functions from suitable training data comes
with a number of challenges. For example, the sets provided as input and the
subsets produced as output can be of any size. Moreover, since the order in
which alternatives are presented is irrelevant, a choice function should be
symmetric. Perhaps most importantly, choice functions are naturally
context-dependent, in the sense that the preference in favor of an alternative
may depend on what other options are available. We formalize the problem of
learning choice functions and present two general approaches based on two
representations of context-dependent utility functions. Both approaches are
instantiated by means of appropriate neural network architectures, and their
performance is demonstrated on suitable benchmark tasks.