Remember me

Register  |   Lost password?


Econophysics Forum Website logo

Scaling symmetry, renormalization, and time series modeling

Thu, 16 May 2013 08:23:07 GMT

We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous auto-regressive component and a random rescaling factor embodying exogenous influences. Mathematical properties like increments' stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance in terms of obtaining closed formulas for derivative pricing. Further important features are: The possibility of making contact, in certain limits, with auto-regressive models widely used in finance; The possibility of partially resolving the endogenous and exogenous components of the volatility, with consistent results when applied to historical series.

, , , , , , , , , , ,